pydantic_ai.mcp
MCPServer
Bases: ABC
Base class for attaching agents to MCP servers.
See https://modelcontextprotocol.io for more information.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|
tool_prefix
class-attribute
instance-attribute
tool_prefix: str | None = None
A prefix to add to all tools that are registered with the server.
If not empty, will include a trailing underscore(_
).
e.g. if tool_prefix='foo'
, then a tool named bar
will be registered as foo_bar
client_streams
abstractmethod
async
client_streams() -> AsyncIterator[
tuple[
MemoryObjectReceiveStream[
SessionMessage | Exception
],
MemoryObjectSendStream[SessionMessage],
]
]
Create the streams for the MCP server.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
get_prefixed_tool_name
Get the tool name with prefix if tool_prefix
is set.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
90 91 92 |
|
get_unprefixed_tool_name
Get original tool name without prefix for calling tools.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
94 95 96 |
|
list_tools
async
list_tools() -> list[ToolDefinition]
Retrieve tools that are currently active on the server.
Note: - We don't cache tools as they might change. - We also don't subscribe to the server to avoid complexity.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
call_tool
async
call_tool(
tool_name: str, arguments: dict[str, Any]
) -> (
str
| BinaryContent
| dict[str, Any]
| list[Any]
| Sequence[
str | BinaryContent | dict[str, Any] | list[Any]
]
)
Call a tool on the server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tool_name
|
str
|
The name of the tool to call. |
required |
arguments
|
dict[str, Any]
|
The arguments to pass to the tool. |
required |
Returns:
Type | Description |
---|---|
str | BinaryContent | dict[str, Any] | list[Any] | Sequence[str | BinaryContent | dict[str, Any] | list[Any]]
|
The result of the tool call. |
Raises:
Type | Description |
---|---|
ModelRetry
|
If the tool call fails. |
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
MCPServerStdio
dataclass
Bases: MCPServer
Runs an MCP server in a subprocess and communicates with it over stdin/stdout.
This class implements the stdio transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#stdio for more information.
Note
Using this class as an async context manager will start the server as a subprocess when entering the context, and stop it when exiting the context.
Example:
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStdio
server = MCPServerStdio( # (1)!
'deno',
args=[
'run',
'-N',
'-R=node_modules',
'-W=node_modules',
'--node-modules-dir=auto',
'jsr:@pydantic/mcp-run-python',
'stdio',
]
)
agent = Agent('openai:gpt-4o', mcp_servers=[server])
async def main():
async with agent.run_mcp_servers(): # (2)!
...
- See MCP Run Python for more information.
- This will start the server as a subprocess and connect to it.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
env
class-attribute
instance-attribute
The environment variables the CLI server will have access to.
By default the subprocess will not inherit any environment variables from the parent process.
If you want to inherit the environment variables from the parent process, use env=os.environ
.
log_level
class-attribute
instance-attribute
log_level: LoggingLevel | None = None
The log level to set when connecting to the server, if any.
See https://modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging#logging for more details.
If None
, no log level will be set.
cwd
class-attribute
instance-attribute
The working directory to use when spawning the process.
tool_prefix
class-attribute
instance-attribute
tool_prefix: str | None = None
A prefix to add to all tools that are registered with the server.
If not empty, will include a trailing underscore(_
).
e.g. if tool_prefix='foo'
, then a tool named bar
will be registered as foo_bar
timeout
class-attribute
instance-attribute
timeout: float = 5
The timeout in seconds to wait for the client to initialize.
MCPServerSSE
dataclass
Bases: _MCPServerHTTP
An MCP server that connects over streamable HTTP connections.
This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.
Note
Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.
Example:
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerSSE
server = MCPServerSSE('http://localhost:3001/sse') # (1)!
agent = Agent('openai:gpt-4o', mcp_servers=[server])
async def main():
async with agent.run_mcp_servers(): # (2)!
...
- E.g. you might be connecting to a server run with
mcp-run-python
. - This will connect to a server running on
localhost:3001
.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
MCPServerHTTP
dataclass
Bases: MCPServerSSE
An MCP server that connects over HTTP using the old SSE transport.
This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.
Note
Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.
Example:
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerHTTP
server = MCPServerHTTP('http://localhost:3001/sse') # (1)!
agent = Agent('openai:gpt-4o', mcp_servers=[server])
async def main():
async with agent.run_mcp_servers(): # (2)!
...
- E.g. you might be connecting to a server run with
mcp-run-python
. - This will connect to a server running on
localhost:3001
.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
MCPServerStreamableHTTP
dataclass
Bases: _MCPServerHTTP
An MCP server that connects over HTTP using the Streamable HTTP transport.
This class implements the Streamable HTTP transport from the MCP specification. See https://modelcontextprotocol.io/introduction#streamable-http for more information.
Note
Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.
Example:
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP
server = MCPServerStreamableHTTP('http://localhost:8000/mcp') # (1)!
agent = Agent('openai:gpt-4o', mcp_servers=[server])
async def main():
async with agent.run_mcp_servers(): # (2)!
...
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
|